MongoDB to Azure Synapse

This page provides you with instructions on how to extract data from MongoDB and load it into Azure Synapse. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is MongoDB?

MongoDB, or just Mongo, is an open source NoSQL database that stores data in JSON format. It uses a document-oriented data model, and data fields can vary by document. MongoDB isn't tied to any specified data structure, meaning that there's no particular format or schema for data in a Mongo database.

What is Azure Synapse?

Azure Synapse (formerly Azure SQL Data Warehouse) is a cloud-based petabyte-scale columnar database service with controls to manage compute and storage resources independently. It offers encryption of data at rest and dynamic data masking to mask sensitive data on the fly, and it integrates with Azure Active Directory. It can replicate to read-only databases in different geographic regions for load balancing and fault tolerance.

Getting data out of MongoDB

The process of pulling data out of MongoDB depends on how you've loaded data into MongoDB. In some cases, it may be impossible to extract all of your data, because NoSQL databases don't require structure (i.e. specific columns). Relational databases, such as those used for data warehouses, use a more traditional, rigid structure. You'll need to defined a structure in the relational database into which you can insert MongoDB data.

Don't stress about the confusing data structure. Lots of the data that's loaded into MongoDB is created by a computer, so it probably has a pretty predictable structure. If you can find specific fields that exist for every record, you're well on your way. Make sure these fields appear in the records of each collection you'd like to replicate from MongoDB. There are many ways to do this. The most popular method to get data from MongoDB is to use the find() command.

Sample MongoDB data

MongoDB stores and returns JSON-formatted data. Here's an example of what a response might look like to a query against the products collection.

db.products.find( { qty: { $gt: 25 } }, { _id: 0, qty: 0 } )

{ "item" : "pencil", "type" : "no.2" }
{ "item" : "bottle", "type" : "blue" }
{ "item" : "paper" }

Loading data into Azure Synapse

Azure Synapse provides a multi-step process for loading data. After extracting the data from its source, you can move it to Azure Blob storage or Azure Data Lake Store. You can then use one of three utilities to load the data:

  • AZCopy uses the public internet.
  • Azure ExpressRoute routes the data through a dedicated private connection to Azure, bypassing the public internet by using a VPN or point-to-point Ethernet network.
  • The Azure Data Factory (ADF) cloud service has a gateway that you can install on your local server, then use to create a pipeline to move data to Azure Storage.

From Azure Storage you can load the data into Azure Synapse staging tables by using Microsoft's PolyBase technology. You can run any transformations you need while the data is in staging, then insert it into production tables. Microsoft offers documentation for the whole process.

Keeping MongoDB data up to date

Fine job! You are the proud developer of a script that moves data from MongoDB to your data warehouse. This works as a one-shot deal. It's good to think about what will happen when there is new and updated data in MongoDB.

One option that works would be to load the entire MongoDB dataset all over again. That would certainly update the data, but it's not very efficient and can also cause terribly latency.

The smartest way to get data updated from MongoDB would be to identify keys that can be used as bookmarks to store where you script left off on the last run. Fields like updated_at, modified_at, or other auto-incrementing data are useful here. With that done, you can set up your script as a cron job or continuous loop to identify new data as it appears.

Other data warehouse options

Azure Synapse is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, Snowflake, or Panoply, which are RDBMSes that use similar SQL syntax. Others choose a data lake, like Amazon S3 or Delta Lake on Databricks. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Snowflake, To Panoply, To S3, and To Delta Lake.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to move data from MongoDB to Azure Synapse automatically. With just a few clicks, Stitch starts extracting your MongoDB data, structuring it in a way that's optimized for analysis, and inserting that data into your Azure Synapse data warehouse.